Abstract

Depositing pre-formed gas-phase nanoparticles, whose properties can be widely varied, onto surfaces enables the production of films with designed properties. The films can be nanoporous or, if co-deposited with an atomic vapour, granular, allowing independent control over the size and volume fraction of the grains. This high degree of control over the nanostructure of the film enables the production of thin films with a wide variety of behaviour, and the technique is destined to make a significant contribution to the production of high-performance magnetic materials. Here we review the behaviour of magnetic nanoparticle assemblies on surfaces and in non-magnetic and magnetic matrices deposited from the gas phase at densities from the dilute limit to pure nanoparticle films with no matrix. At sufficiently low volume fractions (∼1%), and temperatures well above their blocking temperature, nanoparticle assemblies in non-magnetic matrices show ideal superparamagnetism. At temperatures below the blocking temperature, the magnetization behaviour of both Fe and Co particles is consistent with a uniaxial intra-particle magnetic anisotropy and an anisotropy constant several times higher than the bulk magnetocrystalline value. At relatively low volume fractions (≥5%) the effect of inter-particle interactions becomes evident, and the magnetization behaviour becomes characteristic of agglomerates of nanoparticles exchange coupled to form magnetic grains larger than a single particle that interact with each other via dipolar forces. The evolution of the magnetic behaviour with volume fraction is predicted by a Monte-Carlo model that includes exchange and dipolar couplings. Above the percolation threshold the films become magnetically softer, and films of pure clusters have a magnetic ground state that obeys the predicted magnetization behaviour of a correlated super-spin glass characteristic of random anisotropy materials. Magnetic nanoparticles in non-magnetic matrices show giant magnetoresistance behaviour, and the magnetotransport in deposited nanoparticle films is reviewed. Assembling Fe nanoparticles in Co matrices and vice versa is a promising technique for producing magnetic materials with a saturation magnetization that exceeds the Slater–Pauling limit. Structural studies reveal that the particles' atomic structure is dependent on the matrix material, and it is possible to prepare Fe nanoparticles with an fcc structure and, unusually, Co particles with a bcc structure. We also look to the future and discuss applications for materials made from more complex bi-metallic and core–shell nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.