Abstract
Oxy-fuel combustion in separated-jet burners has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. This paper presents an investigation into confined, turbulent, oxy-flames generated by a burner consisting of a central natural gas jet surrounded by two oxygen jets. The study is focused on the identifying the influence of burner parameters on the flame characteristics and topology, namely stability, lift-off height and flame length. The effects of the natural gas and oxygen jet exit velocities, the distance separating the jets and the deflection of oxygen jets towards the natural gas jet are examined. The OH chemiluminescence. Results show that the lift-off heights increase when jet exit velocities and the distance separating the jets are increased. The deflection of oxygen jets decreases the lift-off height and increases the volume of flame in the transversal plane. The flame length increases principally with the oxygen exit velocity and the separation distance, and decreases considerably when the angle of oxygen jets is increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Communications in Heat and Mass Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.