Abstract
Summary In this article, we show that by subjecting the pivot of a simple inextensible pendulum to small amplitude high frequency rectilinear oscillations it is possible to make it operate in a weightless environment. The axis of vibration of the pivot defines a preferred direction in space and a consequential dynamical structure which is completely absent when the pivot is fixed. Using spherical polar coordinates centred at the pivot, we show that the motion of such a pendulum has fast and slow-scale components which we analyse using the method of multiple scales. The slow scale equation for the polar angle is autonomous, and a phase plane analysis reveals the essential orbital structure including the existence of conical solutions analogous to the terrestrial fixed pivot conical pendulum. In the absence of an azimuthal velocity component, its behaviour can provide a direct simulation of a plane terrestrial simple fixed pivot pendulum with a correspondingly simple form for the small amplitude period. We can also use a two-scale analysis to examine the effects of damping. Here, the slow scale polar equation has two asymptotically stable states, and we employ a combination of numerical and asymptotic analyses to elicit the slow scale orbital trajectories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of Mechanics and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.