Abstract

Monoterpenes are a large class of naturally occurring fragrant molecules. These chemicals are commonly used in olfactory studies to survey neural activity and probe the behavioral limits of odor discrimination. Monoterpenes (typically in the form of essential oils) have been used for centuries for therapeutic purposes and have pivotal roles in various biological and medical applications. Despite their importance for multiple lines of research using rodent models and the role of the olfactory system in detecting these volatile chemicals, the murine sensitivity to monoterpenes remains mostly unexplored. We assayed the ability of C57BL/6J mice to detect nine different monoterpenes (the acyclic monoterpenes: geraniol, citral, and linalool; the monocyclic monoterpenes: r-limonene, s-limonene, and γ-terpinene; and the bicyclic monoterpenes: eucalyptol, α-pinene, and β-pinene) using a head-fixed Go / No-Go operant conditioning assay. We found that mice can reliably detect monoterpene concentrations in the low parts per billion (ppb) range. Specifically, mice were most sensitive to geraniol (threshold: 0.7 ppb) and least sensitive to γ-terpinene (threshold: 18.1 ppb). These estimations of sensitivity serve to set the lower limit of relevant monoterpene concentrations for functional experiments in mice. To define an upper limit, we estimated the maximum concentrations that a mouse may experience in nature by collating published headspace analyses of monoterpene concentrations emitted from natural sources. We found that natural monoterpenes concentrations typically ranged from ~1 to 1000 ppb. It is our hope that this dataset will help researchers use appropriate monoterpene concentrations for functional studies and provide context for the vapor-phase delivery of these chemicals in studies investigating their biological activity in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call