Abstract

Predation is one of the key factors governing patterns in natural systems, and adjustments of prey behaviors in response to a predator stimulus can have important ecological implications for wild fish. To investigate the effects of predators on the behavior of prey fish and to test whether the possible effects varied with predator size, black carp (Mylopharyngodon piceus) and snakehead (Channa argus) (a size-matched predator treatment with a similar body size to prey fish and a larger predator treatment with approximately 2.7 times of the body mass of prey fish) were selected to function as prey and predator, respectively. Their spontaneous activities were videorecorded in a central circular arena surrounded by a ring holding the stimulus fish. The distance between prey and predator fish was approximately 200% of the distance between two prey fish, which suggested that black carp can distinguish their conspecifics from heterospecifics and probably recognize the snakehead as a potential predator. The prey fish spent substantially less time moving and exhibited an overall shorter total distance of movement after the size-matched or large predator was introduced, which possibly occurred due to increased vigilance or efforts to reduce the possibility of detection by potential predators. However, there was no significant difference in either distance or spontaneous activities between two predator treatments. These findings suggested that (1) an anti-predator strategy in black carp might involve maintaining a safe distance, decreasing activity and possibly increased vigilance and that (2) the behaviors of prey response to predators were not influenced by their relative size difference.

Highlights

  • Predation is one of the central factors governing patterns in natural systems (Sih, Englund & Wooster, 1998), and the prey behavior is expected to change as a result of predation (Diehl & Eklöv, 1995; Ryan et al, 2012; Fu et al, 2015a; Fu et al, 2015b)

  • When a snakehead was placed in the ring area, the distance between prey and predator fish significantly increased to approximately 20 cm (F2,17 = 9.599, P = 0.002), whereas there was no significant difference in the distance between the size-matched and larger predator treatments

  • The distance between black carp in the control treatment was approximately 10 cm, while the distance between black carp and snakehead in both predator treatments was approximately 20 cm. This suggests that black carp can distinguish their conspecifics from heterospecifics

Read more

Summary

Introduction

Predation is one of the central factors governing patterns in natural systems (Sih, Englund & Wooster, 1998), and the prey behavior is expected to change as a result of predation (Diehl & Eklöv, 1995; Ryan et al, 2012; Fu et al, 2015a; Fu et al, 2015b). The difference might be due to differences in morphological, ecological characteristics, nutritional status and anti-predator strategy of the prey as well as the hunting strategies of different predators (Peacor, 2002; Oplinger, Wahl & Nannini, 2011; Lönnstedt et al, 2012). The present study is the first to explore the behavioral response of a prey fish to its predator as well as the effect of the body size of predators on the behavioral response of the prey

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call