Abstract

Based on the Stroh-type formalism, we present a concise analytic method to solve the problem of complicated defects in piezoelectric materials. Using this method and the technique of conformal mapping, the problem of two non-symmetrical collinear cracks emanating from an elliptical hole in a piezoelectric solid is investigated under remotely uniform in-plane electric loading and anti-plane mechanical loading. The exact solutions of the field intensity factors and the energy release rate are presented in closed-form under the permeable electric boundary condition. With the variation of the geometrical parameters, the present results can be reduced to the well-known results of a mode-III crack in piezoelectric materials. Moreover, new special models used for simulating more practical defects in a piezoelectric solid are obtained, such as two symmetrical edge cracks and single edge crack emanating from an elliptical hole or circular hole, T-shaped crack, cross-shaped crack, and semi-infinite plane with an edge crack. Numerical results are then presented to reveal the effects of geometrical parameters and the applied mechanical loading on the field intensity factors and the energy release rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call