Abstract

Silicon is an essential element in the Zn-55Al-1.6Si coating. It is added to promote the formation of an adherent coating and prevent the excessive growth of an intermetallic alloy layer at the steel/coating interface. The addition of silicon also results in the formation of a silicon phase distributed in the interdendritic region of the overlay, having a flowery pattern on the surface, and appearing needlelike when observed inside the overlay. The behavior of silicon during the solidification process of the Zn-55Al-1.6Si coating is examined in the current study. It is found that the coating solidification proceeds in three stages. At stage I, primary α-Al dendrites develop at about 566 °C to 520 °C, forming the framework of the coating structure. This is followed by stage II at about 520 °C to 381 °C, where the binary Al-Si eutectic reaction takes place, with the majority of the silicon phase forming at about 520 °C to 480 °C. At stage III the remaining molten phase undergoes a ternary Al-Zn-Si eutectic reaction forming the interdendritic zinc-rich network. The ternary Al-Zn-Si eutectic reaction is essentially equivalent to the binary Al-Zn eutectic reaction because of the very low level of silicon at the Al-Zn-Si eutectic point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.