Abstract

Abstract This research aims to investigate the applicability and performance of piled rafts in soft clay. This aim has been achieved by studying how the pile length, pile number, raft-soil relative stiffness, and presence of a sand cushion beneath the raft would affect piled raft settlement, differential settlement, and load sharing. Piled rafts have been numerically simulated using PLAXIS 3D software. Experimental testing results were used to verify the numerical simulation. The portion of the load carried by the piles to the total applied load was represented by the load sharing ratio (GPR). The results indicated that with increasing pile length and number, settlement and differential settlement decreased. It was also noticed that with increasing raft-soil relative stiffness, the differential settlement decreased. The GPR decreased with increasing thickness and relative density of the sand cushion, whereas it increased with increasing pile length and number. This increase in GPR was 13.7, 36, and 58% with an increase in pile length to diameter ratio from 10 to 30 for the number of piles 4, 9, and 16, respectively. Additionally, the raft-soil relative stiffness was observed to have a marginal effect on the GPR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call