Abstract

The cores of neutron stars harbor the highest matter densities known to occur in nature, up to several times the densities in atomic nuclei. Similarly, magnetic field strengths can exceed the strongest fields generated in terrestrial laboratories by ten orders of magnitude. Hyperon-dominated matter, deconfined quark matter, superfluidity, even superconductivity are predicted in neutron stars. Similarly, quantum electrodynamics predicts that in strong magnetic fields the vacuum becomes birefringent. The properties of matter under such conditions is governed by Quantum Chromodynamics (QCD) and Quantum Electrodynamics (QED), and the close study of the properties of neutron stars offers the unique opportunity to test and explore the richness of QCD and QED in a regime that is utterly beyond the reach of terrestrial experiments. Experimentally, this is almost virgin territory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.