Abstract
Thin AlN piezoelectric layers have been deposited on high resistivity Si and glass substrates by reactive RF magnetron sputtering, in order to manufacture one-port gigahertz operating surface acoustic wave (SAW)-type resonators to be used as temperature sensors. The growth morphology surface topography, crystallographic structure, and crystalline quality of the AlN layers have been analyzed. Advanced nanolithographic techniques have been used to manufacture structures having interdigitated transducers with fingers and finger interdigit spacing width in the range of 250-170 nm. High resonance frequency ensures the increase of the sensitivity, but also of its normalized value, the temperature coefficient of frequency (TCF). The resonance frequency shift versus temperature has been measured in the -267°C-+150°C temperature range, using a cryostat setup adapted for on wafer microwave measurements up to 50 GHz. The sensitivity and the TCF were determined in the 25 °C-150 °C temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.