Abstract

The use of the osmotic thermodynamic model, combined with a series of methane and carbon dioxide gas adsorption experiments at various temperatures, has allowed shedding some new light on the fascinating phase behavior of flexible MIL-53(Al) metal-organic frameworks. A generic temperature-loading phase diagram has been derived; it is shown that the breathing effect in MIL-53 is a very general phenomenon, which should be observed in a limited temperature range regardless of the guest molecule. In addition, the previously proposed stress model for the structural transitions of MIL-53 is shown to be transferable from xenon to methane adsorption. The stress model also provides a theoretical framework for understanding the existence of lp/np phase mixtures at pressures close to the breathing transition pressure, without having to invoke an inhomogeneous distribution of the adsorbate in the porous sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.