Abstract

Tensile impact experiments were performed to obtain stress-extension ratio curves of uniaxial strip specimens and dynamic force-extension curves of thin rubber sheets at impact rates of loading. Results from the uniaxial tension tests indicated that although the rubber became stiffer with increasing strain rate, the stress-extension ratio curves remained virtually the same above 280 s. Above this critical strain rate, strength, fracture strain and toughness decreased with increasing strain rate. When strain rates were below 180 s, the initial modulus, tensile strength and breaking extension increased as the strain rate increased. Between strain rates of 180 sand 280 s, the initial modulus and tensile strength increased with increasing strain rate but the extension at break decreased with increasing strain rate. A hyper-viscoelastic constitutive relation of integral form was used to describe the rate-dependent material behavior of the rubber. The proposed constitutive equation was implemented in ABAQUS Explicit via a user-defined subroutine and used to predict the dynamic response of the rubber sheets in the experiments. Numerical predictions for the transient deformation and failure of the rubber sheet were within 10% of experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.