Abstract

As the deep convective clouds (DCCs) over the western Pacific and Indian Ocean warm pool may play different roles in the climate system, variations in DCC properties over these two sectors are investigated and compared. The DCC intensity and area varies more significantly in the Indian Ocean than the western Pacific sector, while the DCC frequency is comparable in both sectors at the seasonal scale. Although the Indian Ocean sector is strongly dominated by the seasonal evolution, the interannual variations in the two sectors are comparable for all three DCC properties (frequency, intensity, and area). Besides, Walker circulation is closely correlated with the interannual variability of DCCs in both sectors. The Walker circulation strengthens (weakens) as the DCCs shift eastward (westward) over the Indian Ocean sector and westward (eastward) over the western Pacific sector. When more or stronger DCCs occur over the Indian Ocean sector (western Pacific sector), the Walker circulation becomes stronger (weaker) and shifts westward (eastward). Interestingly, the response of the Walker circulation to DCC variability over the warm pool is asymmetry. The asymmetry response of the Walker circulation to the negative and positive DCC anomaly may be related to the non-linearity internal variability of the atmosphere. DCCs over the Indian Ocean sector have a much weaker nonlinear correlation with the Walker circulation than DCCs over the western Pacific sector.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call