Abstract

Cardiovascular diseases hold the highest mortality rate among other illnesses which reveals the significance of current limitations in common therapies. Three-dimensional (3D) scaffolds have been utilized as potential therapies for treating heart failure following myocardial infarction (MI). In particular, native tissues have numerous properties that make them potentially useful scaffolding materials for recreating the native cardiac extracellular matrix (ECM). Here, we have developed a pericardium-derived scaffold that mimics the natural myocardial extracellular environment and investigated its properties for cardiac tissue engineering. Human pericardium membranes (PMs) were decellularized to yield 3D macroporous pericardium scaffolds (PSs) with well-defined architecture and interconnected pores. PSs enabled human Sca-1+ cardiac progenitor cells (CPCs) to migrate, survive, proliferate and differentiate at higher rates compared with decellularized pericardium membranes (DPMs) and collagen scaffolds (COLs). Interestingly, histological examination of subcutaneous transplanted scaffolds after one month revealed low immunological response, enhanced angiogenesis and cardiomyocyte differentiation in PSs compared to DPMs and COLs. This research demonstrates the feasibility of fabricating 3D porous scaffolds from native ECMs and suggests the therapeutic potential of CPC-seeded PSs in the treatment of ischemic heart diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.