Abstract

Since the early 1990s, squash production in Costa Rica has been affected by a whitefly-transmitted disease characterized by stunting and yellow mottling of leaves. The squash yellow mottle disease (SYMoD) was shown to be associated with a bipartite begomovirus, originally named squash yellow mild mottle virus (SYMMoV). It was subsequently established that SYMMoV is a strain of melon chlorotic leaf curl virus (MCLCuV), a bipartite begomovirus that causes a chlorotic leaf curl disease of melons in Guatemala. In the present study, the complete sequences of the DNA-A and DNA-B components of a new isolate of the strain MCLCuV-Costa Rica (MCLCuV-CR) were determined. Comparisons of full-length DNA-A sequences revealed 97% identity with a previously characterized isolate of MCLCuV-CR, and identities of 90 to 91% with those of isolates of the strain MCLCuV-Guatemala (MCLCuV-GT), which is below or at the current begomovirus species demarcation threshold of 91%. A more extensive analysis of the MCLCuV-CR and -GT sequences revealed substantial divergence in both components and different histories of recombination for the DNA-A components. The cloned full-length DNA-A and DNA-B components of this new MCLCuV-CR isolate were infectious and induced SYMoD in a range of squashes and in pumpkin, thereby fulfilling Koch's postulates for this disease. However, in contrast to MCLCuV-GT, MCLCuV-CR induced mild symptoms in watermelon and no symptoms in melon and cucumber. Taken together, our results indicate that MCLCuV-CR and -GT have substantially diverged, genetically and biologically, and have evolved to cause distinct diseases of different cucurbit crops. Taxonomically, these viruses are at the strain/species boundary, but retain the designation as strains of Melon chlorotic leaf curl virus under current ICTV guidelines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call