Abstract

An analysis by difference technique yields estimates of H2O in basaltic and andesitic glasses, which are sufficiently accurate (± 1.4 percent absolute) to be useful. Glass inclusions trapped in large olivine crystals from tephra-rich eruptions have 1 to 5 percent H2O. The highest H2O contents are found in basaltic inclusions in magnesium rich olivines from Mount Shasta, California. Andesitic inclusions have less H2O. It seems probable that tephra-rich high-alumina magmas evolve in a vapor saturated environment at fairly shallow depths (few kilometers). This depth appears to be less for Medicine Lake Highlands than for Mount Shasta. Vapor saturation probably inhibits the rise of magma, thus the initial vapor content of a magma may govern its stagnation level. Volatile-rich parental magmas like Mount Shasta basalt probably tend to stagnate at deeper levels, crystallize early amphibole and produce comparatively calcic differentiates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call