Abstract

AbstractThe Beaufort Gyre is a significant reservoir of freshwater in the Arctic. It is thought to play a key role in regulating Arctic freshwater discharge to the North Atlantic, and in recent decades its freshwater content has increased in a time of rapid Arctic change. Despite this, its exact dynamical behavior is not fully understood. Here, we make use of an Arctic‐wide dataset of dynamic ocean topography, including data under sea ice, to characterize the time‐varying extent, shape, and location of the Beaufort Gyre. We show that the gyre expanded toward the northwest between 2003 and 2014, resulting in increased proximity to the Chukchi Plateau and Mendeleev Ridge by 2014. We find that the gyre strength and maximum dynamic ocean topography both respond readily to changes in intensity of the surface forcing, but the gyre area is additionally affected by the location of the Beaufort Sea High. This results in expansion over the Chukchi Plateau and increased asymmetry of the gyre as it becomes constrained by the shallow bathymetry. The gyre strength is correlated with the integrated surface stress on the ocean over the previous 3 months. We discuss the implications of the expansion over shallow bathymetry on gyre dynamical behavior and the potential impacts on the physical properties in the Canada Basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.