Abstract

The current-dependent beam divergence at a distance of 50 μm from an indium-liquid metal ion source is derived from experimental data obtained by measuring the beam spread with a 3D Plasma diagnostic system at a distance of 10 cm from the needle tip. The observed relationship between emission current and beam divergence in vicinity of the emitting needle is used to design a focusing electrode for a field-emission electric propulsion thruster operating at currents up to 150 μA. Another application involves focused ion beam columns which may choose to forego a beam-limiting aperture, such as LMIS-based rapid machining tools with large beam currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call