Abstract
We study the blow-up criterion of smooth solutions to the 3D MHD equations. By means of the Littlewood-Paley decomposition, we prove a Beale-Kato-Majda type blow-up criterion of smooth solutions via the vorticity of velocity only, namely $$\sup_{j\in\mathbb{Z}}\int_0^T\|\Delta_j(\nabla\times u)\|_\infty dt,$$where Δ j is the frequency localization operator in the Littlewood-Paley decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.