Abstract

Bcr–Abl is the transforming principle underlying chronic myelogenous leukaemia (CML). Here, we use a functional interaction proteomics approach to map pathways by which Bcr–Abl regulates defined cellular processes. The results show that Bcr–Abl regulates the actin cytoskeleton and non-apoptotic membrane blebbing via a GADS/Slp-76/Nck1 adaptor protein pathway. The binding of GADS to Bcr–Abl requires Bcr–Abl tyrosine kinase activity and is sensitive to the Bcr–Abl inhibitor imatinib, while the GADS/Slp-76 and Slp-76/Nck interactions are tyrosine phosphorylation independent. All three adaptor proteins co-localize with cortical actin in membrane blebs. Downregulation of each adaptor protein disrupts the actin cytoskeleton and membrane blebbing in a similar fashion and similar to imatinib. These findings highlight the importance of protein interaction dependent adaptor protein pathways in oncogenic kinase signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call