Abstract

The occurrence of autophagy dysregulation is vital in the development of myelodysplastic syndrome and its transformation to acute myeloid leukemia. However, the mechanisms are largely unknown. Here, we have investigated the mechanism of the bcl6 corepressor mutation in myelodysplastic syndrome development and its transformation to acute myeloid leukemia. We identified a novel pathway involving histone deacetylase 6 and forkhead box protein O1, which leads to autophagy defects following the bcl6 corepressor mutation. And this further causes apoptosis and cell cycle arrest. The bcl6 corepressor-mutation-repressed autophagy resulted in the accumulation of damaged mitochondria, DNA, and reactive oxygen species in myelodysplastic syndrome cells, which could then lead to genomic instability and spontaneous mutation. Our results suggest that the bcl6 corepressor inactivating mutations exert pro-carcinogenic effects through survival strike, which is only an intermediate process. These findings provide mechanistic insights into the role of the bcl6 corepressor gene in myelodysplastic syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call