Abstract
AbstractThe notion of symmetrization, also known as Davenport’s reflection principle, is well known in the area of the discrepancy theory and quasi- Monte Carlo (QMC) integration. In this paper we consider applying a symmetrization technique to a certain class of QMC point sets called digital nets over ℤb. Although symmetrization has been recognized as a geometric technique in the multi-dimensional unit cube, we give another look at symmetrization as a geometric technique in a compact totally disconnected abelian group with dyadic arithmetic operations. Based on this observation we generalize the notion of symmetrization from base 2 to an arbitrary base b ∈ ℕ, b ≥ 2. Subsequently, we study the QMC integration error of symmetrized digital nets over ℤbin a reproducing kernel Hilbert space. The result can be applied to component-by-component construction or Korobov construction for finding good symmetrized (higher order) polynomial lattice rules which achieve high order convergence of the integration error for smooth integrands at the expense of an exponential growth of the number of points with the dimension. Moreover, we consider two-dimensional symmetrized Hammersley point sets in prime base b, and prove that the minimum Dick weight is large enough to achieve the best possible order of Lpdiscrepancy for all 1 ≤ p < ∞.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.