Abstract
Statistical simulation studies are becoming increasingly popular to demonstrate the performance or superiority of new computational procedures and algorithms. Despite this status quo, previous surveys of the literature have shown that the reporting of statistical simulation studies often lacks relevant information and structure. The latter applies in particular to Bayesian simulation studies, and in this paper the Bayesian simulation study framework (BASIS) is presented as a step towards improving the situation. The BASIS framework provides a structured skeleton for planning, coding, executing, analyzing, and reporting Bayesian simulation studies in biometrical research and computational statistics. It encompasses various features of previous proposals and recommendations in the methodological literature and aims to promote neutral comparison studies in statistical research. Computational aspects covered in the BASIS include algorithmic choices, Markov-chain-Monte-Carlo convergence diagnostics, sensitivity analyses, and Monte Carlo standard error calculations for Bayesian simulation studies. Although the BASIS framework focuses primarily on methodological research, it also provides useful guidance for researchers who rely on the results of Bayesian simulation studies or analyses, as current state-of-the-art guidelines for Bayesian analyses are incorporated into theBASIS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.