Abstract

This is the first in a series of gamma-ray burst spectroscopy catalogs from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory, each covering a different aspect of burst phenomenology. In this paper, we present time sequences of spectral fit parameters for 156 bursts selected for either their high peak flux or fluence. All bursts have at least eight spectra in excess of 45 σ above background and span burst durations from 1.66 to 278 s. Individual spectral accumulations are typically 128 ms long at the peak of the brightest events but can be as short as 16 ms, depending on the type of data selected. We have used mostly high energy resolution data from the Large Area Detectors, covering an energy range of typically 28-1800 keV. The spectral model chosen is from a small empirically determined set of functions, such as the well-known "GRB" function, that best fits the time-averaged burst spectra. Thus, there are generally three spectral shape parameters available for each of the 5500 total spectra: a low-energy power-law index, a characteristic break energy, and possibly a high-energy power-law index. We present the distributions of the observed sets of these parameters and comment on their implications. The complete set of data that accompanies this paper is necessarily large and thus is archived in the electronic edition of the Astrophysical Journal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.