Abstract
Animals navigate a wide range of distances, from a few millimeters to globe-spanning journeys of thousands of kilometers. Despite this array of navigational challenges, similar principles underlie these behaviors across species. Here, we focus on the navigational strategies and supporting mechanisms in four well-known systems: the large-scale migratory behaviors of sea turtles and lepidopterans as well as navigation on a smaller scale by rats and solitarily foraging ants. In lepidopterans, rats, and ants we also discuss the current understanding of the neural architecture which supports navigation. The orientation and navigational behaviors of these animals are defined in terms of behavioral error-reduction strategies reliant on multiple goal-directed servomechanisms. We conclude by proposing to incorporate an additional component into this system: the observation that servomechanisms operate on oscillatory systems of cycling behavior. These oscillators and servomechanisms comprise the basis for directed orientation and navigational behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.