Abstract

Intrinsic semiconductors such as High Purity Germanium Detectors are exceptional X-ray and gamma-ray detectors because of their large sizes and small band gap. They are used for fundamental scientific researches, nuclear material safeguards and security, environmental protection, and human health and safety. The fundamental limit of the energy resolution of a semiconductor detector is determined by variance in the number of electron-hole pairs produced by X-rays in detector volume. The principal characteristic of material for using as semiconductor detector is the Fano factor that determines the fluctuation in the number of electron-hole pairs. Now, all existing methods of experimental determination of the Fano factor in semiconductors are based on the subtraction of electronic noise from the signal variance. In this work, I propose the method of experimental determination of the Fano factor in a planar semiconductor detector based on dependences of the mean amplitude and the energy resolution on the electric field. It was shown that inverse electric field expansion of these dependences allow determining the Fano factor, electron mobility lifetime product, and relative variance of electron lifetime due to inhomogeneous charge transport in semiconductor material. The important advantage of the proposed method is independence on detector electronic noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.