Abstract

BackgroundWe introduce the Basic Immune Simulator (BIS), an agent-based model created to study the interactions between the cells of the innate and adaptive immune system. Innate immunity, the initial host response to a pathogen, generally precedes adaptive immunity, which generates immune memory for an antigen. The BIS simulates basic cell types, mediators and antibodies, and consists of three virtual spaces representing parenchymal tissue, secondary lymphoid tissue and the lymphatic/humoral circulation. The BIS includes a Graphical User Interface (GUI) to facilitate its use as an educational and research tool.ResultsThe BIS was used to qualitatively examine the innate and adaptive interactions of the immune response to a viral infection. Calibration was accomplished via a parameter sweep of initial agent population size, and comparison of simulation patterns to those reported in the basic science literature. The BIS demonstrated that the degree of the initial innate response was a crucial determinant for an appropriate adaptive response. Deficiency or excess in innate immunity resulted in excessive proliferation of adaptive immune cells. Deficiency in any of the immune system components increased the probability of failure to clear the simulated viral infection.ConclusionThe behavior of the BIS matches both normal and pathological behavior patterns in a generic viral infection scenario. Thus, the BIS effectively translates mechanistic cellular and molecular knowledge regarding the innate and adaptive immune response and reproduces the immune system's complex behavioral patterns. The BIS can be used both as an educational tool to demonstrate the emergence of these patterns and as a research tool to systematically identify potential targets for more effective treatment strategies for diseases processes including hypersensitivity reactions (allergies, asthma), autoimmunity and cancer. We believe that the BIS can be a useful addition to the growing suite of in-silico platforms used as an adjunct to traditional research efforts.

Highlights

  • We introduce the Basic Immune Simulator (BIS), an agent-based model created to study the interactions between the cells of the innate and adaptive immune system

  • The agents representing the cells of innate immunity, the Dendritic Cell agents (DCs), Macrophage agents (MΦs) and Natural Killer agent (NKs), are cells generally believed to be produced as precursors in the bone marrow, and circulate in the blood at levels maintained by undefined mechanisms [32]

  • Mice with dendritic cells that lacked CD95 (Fas, a receptor needed for apoptosis), had enhanced ability to cause delayed-type hypersensitivity when their antigen primed dendritic cells were injected into the footpads of naïve mice that were challenged with antigen

Read more

Summary

Results

The BIS was used to qualitatively examine the innate and adaptive interactions of the immune response to a viral infection. Calibration was accomplished via a parameter sweep of initial agent population size, and comparison of simulation patterns to those reported in the basic science literature. The BIS demonstrated that the degree of the initial innate response was a crucial determinant for an appropriate adaptive response. Deficiency or excess in innate immunity resulted in excessive proliferation of adaptive immune cells. Deficiency in any of the immune system components increased the probability of failure to clear the simulated viral infection

Conclusion
Background
Results and discussion
80 NK 60 40 20
Perelson AS
Zinkernagel RM
17. Sansonetti PJ
20. Bonabeau E: Agent-based modeling
23. Orosz CG: The immunomythology of transplantation
38. Hart DNJ: Dendritic Cells
55. Ricevuti G
63. Holgate ST: Rhinoviruses in the pathogenesis of asthma
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.