Abstract

The Mount Athos Peninsula is situated in the south-easternmost part of the Chalkidiki Peninsula in northern Greece. It belongs to the Serbo-Macedonian Massif (SMM), a large basement massif within the Internal Hellenides. The south-eastern part of the Mount Athos peninsula is built by fine-grained banded biotite gneisses and migmatites forming a domal structure. The southern tip of the peninsula, which also comprises Mount Athos itself, is built by limestone, marble and low-grade metamorphic rocks of the Chortiatis Unit. The northern part and the majority of the western shore of the Mount Athos peninsula are composed of highly deformed rocks belonging to a tectonic melange termed the Athos-Volvi-Suture Zone (AVZ), which separates two major basement units: the Vertiskos Terrane in the west and the Kerdillion Unit in the east. The rock-types in this melange range from metasediments, marbles and gneisses to amphibolites, eclogites and peridotites. The gneisses are tectonic slivers of the adjacent basement complexes. The melange zone and the gneisses were intruded by granites (Ierissos, Ouranoupolis and Gregoriou). The Ouranoupolis intrusion obscures the contact between the melange and the gneisses. The granites are only slightly deformed and therefore postdate the accretionary event that assembled the units and created the melange. Pb–Pb- and U–Pb-SHRIMP-dating of igneous zircons of the gneisses and granites of the eastern Athos peninsula in conjunction with geochemical and isotopic analyses are used to put Athos into the context of a regional tectonic model. The ages form three clusters: The basement age is indicated by two samples that yielded Permo-Carboniferous U–Pb-ages of 292.6 ± 2.9 Ma and 299.4 ± 3.5 Ma. The main magmatic event of the granitoids now forming the gneiss dome is dated by Pb–Pb-ages between 140.0 ± 2.6 Ma and 155.7 ± 5.1 Ma with a mean of 144.7 ± 2.4 Ma. A within-error identical age of 146.6 ± 2.3 Ma was obtained by the U–Pb-SHRIMP method. This Late Jurassic age is also known from the Kerdillion Unit and the Rhodope Terrane. The rather undeformed granites are interpreted as piercing plutons. The small granite stocks sampled have Late Cretaceous to Early Tertiary ages of 66.8 ± 0.8 Ma and 68.0 ± 1.0 Ma (U–Pb-SHRIMP)/62.8 ± 3.9 Ma (Pb–Pb). The main accretionary event was according to these data in the Late Jurassic since all younger rocks show little or no deformation. The age distribution together with the geochemical and isotopic signature and the lithology indicates that the eastern part of the Mount Athos peninsula is part of a large-scale gneiss dome also building the Kerdillion Unit of the eastern SMM and the Rhodope Massif. This finding extends the area of this dome significantly to the south and indicates that the tectonic boundary between the SMM and the Rhodope Massif lies within the AVZ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call