Abstract

The effect of base sequence on the structure and flexibility of linear single-stranded RNA molecules and the influence of the base sequence on phosphodiester bond reactivity have been studied. Molecular dynamics simulations of 2.1 ns were carried out for nine chimeric oligonucleotides containing only one unsubstituted ribo unit, all the rest of sugars being 2'-O-methylated. The base sequence has recently been reported to make a big contribution to the reactivity of these compounds. A detailed examination of the interaction energies between the base moieties shows that base stacking is strongly context-dependent and cooperative. The strength of stacking at the site susceptible to chain cleavage by intramolecular transesterification was observed to be dependent on both the flanking bases of the cleavage site and those further apart in the molecule. The interaction energies between the bases in the vicinity of the scissile linkage were found to correlate well with the experimental phosphodiester bond cleavage rates: the stronger the bases close to the cleavage site are stacked, the slower the cleavage rate is.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.