Abstract
Brassinosteroid (BR) signaling leads to the nuclear accumulation of the BRASSINAZOLE-RESISTANT 1 (BZR1) transcription factor, which plays dual roles in activating or repressing the expression of thousands of genes. BZR1 represses gene expression by recruiting histone deacetylases, but how it activates transcription of BR-induced genes remains unclear. Here, we show that BR reshapes the genome-wide chromatin accessibility landscape, increasing the accessibility of BR-induced genes and reducing the accessibility of BR-repressed genes in Arabidopsis. BZR1 physically interacts with the BRAHMA-associated SWI/SNF (BAS)-chromatin-remodeling complex on the genome and selectively recruits the BAS complex to BR-activated genes. Depletion of BAS abrogates the capacities of BZR1 to increase chromatin accessibility, activate gene expression, and promote cell elongation without affecting BZR1's ability to reduce chromatin accessibility and expression of BR-repressed genes. Together, these data identify that BZR1 recruits the BAS complex to open chromatin and to mediate BR-induced transcriptional activation of growth-promoting genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.