Abstract

The composition of the astrophysical relativistic jets remains uncertain. By kinetic particle-in-cell simulations, we show that the baryon component in the jet, or the so-called baryon loading effect (BLE), heavily affects relativistic jets transport dynamics in the interstellar medium. On the one hand, with the BLE, relativistic jets can transport in a much longer distance, because jet electrons draw a significant amount of energy from jet baryons via the Buneman-induced electrostatic waves and the Weibel-mediated collisionless shock; on the other hand, the jet electron phase space distribution may transform from a bottom-wide-single-peak structure to a center-wide-multiple-peak one by increasing the BLE, which largely influences the observed jet morphology. Implications for related astrophysical studies are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.