Abstract
Given a sphere with Bartnik data close to that of a round sphere in Euclidean 3-space, we compute its Bartnik-Bray outer mass to first order in the data's deviation from the standard sphere. The Hawking mass gives a well-known lower bound, and an upper bound is obtained by estimating the mass of a static vacuum extension. As an application we confirm that in a time-symmetric slice concentric geodesic balls shrinking to a point have mass-to-volume ratio converging to the energy density at their center, in accord with physical expectation and the behavior of other quasilocal masses. For balls shrinking to a flat point we can also compute the outer mass to fifth order in the radius---the term is proportional to the Laplacian of the scalar curvature at the center---but our estimate is not refined enough to identify this term at a point which is merely scalar flat. In particular it cannot discern gravitational contributions to the mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.