Abstract

The structural, electronic, optical properties and band offsets of Co2VGa/GaAs(001) interfaces are discussed within the framework of density functional theory (DFT) using the FP-LAPW method, and the exchange-correlation potential is approximated by GGA. All interface structures are stable in the energy point of view, however the V–Ga/As case is found to be more stable than the others. A remarkable potential difference ([Formula: see text]V) appeared in all the interfaces, so the Co2VGa/GaAs(001) interfaces are good candidates for electron injection. In all the cases, there is no full spin polarization at the Fermi level, but high CBO and [Formula: see text] coefficients make them promising candidates for spin injection in the transport devices. Optical studies confirm the high metallic treatment of these interfaces as the main electron transitions had occurred in the infrared and visible regions. The real parts of the dielectric function in the x-direction indicate the different behaviors of “Co–Co/As and V–Ga/Ga” and “Co–Co/Ga and V–Ga/As” in the infrared area. In addition, the plasmon frequencies had occurred at high UV energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.