Abstract
Small monovalent ions are able to polarize carbonaceous nanostructures significantly. We report a systematic investigation of how monovalent and divalent ions influence valence electronic structure of graphene. Pure density functional theory is employed to compute electronic energy levels. We show that the lowest unoccupied molecular orbital (LUMO) of an alkali ion (Li(+), Na(+)) fits between the highest occupied molecular orbital (HOMO) and LUMO of graphene, in such a way as to tune the bottom of the conduction band (i.e., band gap). In turn, Mg(2+) shares its orbitals with graphene. The corresponding binding energy is ca. 4 times higher than that in the case of alkali ions. The reported insights provide inspiration for engineering electrical properties of the graphene-containing systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.