Abstract

We report on measurements of the electrical and optical properties of BaPrO3. The temperature dependences of the electrical conductivity σ and the Seebeck coefficient α of polycrystalline samples were studied over a wide temperature range (300°C–1050°C). At lower temperatures, the observed charge transport can be described as thermally activated hopping of electron‐based small polarons with an activation energy of 0.37 eV. An observed change in temperature dependence of both σ and α around 700°C was observed and interpreted as a transition from extrinsic to intrinsic carrier transport. The intrinsic conduction can be modeled with an apparent electrical band gap of ~2 eV. Optical absorption and emission spectroscopy in the UV–VIS–NIR range revealed a series of characteristic absorption thresholds and the type of optical transitions was identified by combining transmittance and diffuse‐reflectance spectroscopy methods. An absorption edge of indirect type with onset at 0.6 eV is attributed to small polaron effects. The higher lying absorption thresholds of direct origin positioned at around 1.8 and 3.8 eV are correlated with thermal activation parameters from electrical measurements and discussed in terms of the band gap of BaPrO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.