Abstract

We use the notion of A-compact sets (determined by an operator ideal A), introduced by Carl and Stephani (1984), to show that many known results of certain approximation properties and several ideals of compact operators can be systematically studied under this framework. For Banach operator ideals A, we introduce a way to measure the size of A-compact sets and use it to give a norm on KA, the ideal of A-compact operators. Then, we study two types of approximation properties determined by A-compact sets. We focus our attention on an approximation property which makes use of the norm defined on KA. This notion fits the definition of the A-approximation property, recently introduced by Oja (2012), with KA instead of A. We exemplify the power of the Carl–Stephani theory and the geometric structure introduced here by appealing to some recent developments on p-compactness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.