Abstract

We present the BaLROG (Bars in Low Redshift Optical Galaxies) sample of 16 morphologically distinct barred spirals to characterise observationally the influence of bars on nearby galaxies. Each galaxy is a mosaic of several pointings observed with the IFU spectrograph SAURON leading to a tenfold sharper spatial resolution (~100 pc) compared to ongoing IFU surveys. In this paper we focus on the kinematic properties. We calculate the bar strength Qb from classical torque analysis using 3.6 {\mu}m Spitzer (S4G) images, but also develop a new method based solely on the kinematics. A correlation between the two measurements is found and backed up by N-body simulations, verifying the measurement of Qb . We find that bar strengths from ionised gas kinematics are ~2.5 larger than those measured from stellar kinematics and that stronger bars have enhanced influence on inner kinematic features. We detect that stellar angular momentum "dips" at 0.2$\pm$0.1 bar lengths and half of our sample exhibits an anti-correlation of h3 - stellar velocity (v/{\sigma}) in these central parts. An increased flattening of the stellar {\sigma} gradient with increasing bar strength supports the notion of bar-induced orbit mixing. These measurements set important constraints on the spatial scales, namely an increasing influence in the central regions (0.1-0.5 bar lengths), revealed by kinematic signatures due to bar-driven secular evolution in present day galaxies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.