Abstract

In this paper we extend the Balian–Low theorem, which is a version of the uncertainty principle for Gabor (Weyl–Heisenberg) systems, to functions of several variables. In particular, we first prove the Balian–Low theorem for arbitrary quadratic forms. Then we generalize further and prove the Balian–Low theorem for differential operators associated with a symplectic basis for the symplectic form on R2d.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.