Abstract

Abstract We have determined the nucleotide sequences of the expressed VH and Vk genes from 13 secondary (2 degrees) hemagglutinin (HA) (Sb) specific hybridomas derived from a single mouse. These antibodies share an Id, H37-68 (68Id) that dominates the 2 degrees HA(Sb) response in this mouse, but is rare or absent from 2 degrees responses of other mice. We find that these antibodies derive from five clones. The H chains of these antibodies are encoded by a single VH gene joined to a variety of DH and JH genes. The length of complementarity-determining region (CDR) 3 and sequence of the D-J junction are restricted, suggesting selection on CDR3 of the H chain. The L chains are more diverse. In the presented examples, they are encoded by the Vk21C and Vk21E genes and a Vk9 gene, and are joined to Jk1, 2, or 4. Each antibody is extensively mutated. The nature and distribution of the mutations suggests that 68Id-producing cells have been selected by Ag, although there are differences regarding the domain (VH, Vk, or both) in which mutations were selected. The implications of these findings on the idiosyncratic nature of the 68Id antibody response to HA(Sb) are discussed. There are two unusual characteristics regarding somatic mutation in these hybridomas. Whereas the expressed VH and Vk21 genes appear to have accumulated mutations at a high rate (1 to 1.5 x 10(-3)/base pairs/division, the expressed Vk9 genes appear to have accumulated mutations at a 5 to 15-fold lower rate than the expressed VH genes in the same cells. There is also a surprisingly high number of parallel silent somatic mutations in the VH genes, of which all but one are clustered to a 28-bp region in framework region 2 and CDR 2-encoding segments. The probability that this could have occurred by a random mutational process is essentially zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.