Abstract

This paper presents two coupled software packages which receive widespread use in the field of numerical simulations of Quantum Chromo-Dynamics. These consist of the BAGEL library and the BAGEL fermion sparse-matrix library, BFM. The Bagel library can generate assembly code for a number of architectures and is configurable – supporting several precision and memory pattern options to allow architecture specific optimisation. It provides high performance on the QCDOC, BlueGene/L and BlueGene/P parallel computer architectures that are popular in the field of lattice QCD. The code includes a complete conjugate gradient implementation for the Wilson and domain wall fermion actions, making it easy to use for third party codes including the Jefferson Laboratory's CHROMA, UKQCD's UKhadron, and the Riken–Brookhaven–Columbia Collaboration's CPS packages. Program summary Program title: Bagel Catalogue identifier: AEFE_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEFE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public License V2 No. of lines in distributed program, including test data, etc.: 109 576 No. of bytes in distributed program, including test data, etc.: 892 841 Distribution format: tar.gz Programming language: C++, assembler Computer: Massively parallel message passing. BlueGene/QCDOC/others. Operating system: POSIX, Linux and compatible. Has the code been vectorised or parallelized?: Yes. 16 384 processors used. Classification: 11.5 External routines: QMP, QDP++ Nature of problem: Quantum Chromo-Dynamics sparse matrix inversion for Wilson and domain wall fermion formulations. Solution method: Optimised Krylov linear solver. Unusual features: Domain specific compiler generates optimised assembly code. Running time: 1 h per matrix inversion; multi-year simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.