Abstract

Understanding how promoters work in non-host cells is complex. Nonetheless, understanding this process is crucial while performing gene expression modulation studies. This study began with the process of constructing a shuttle vector with CMV and OpIE2 promoters in a tandem arrangement to achieve gene expression in both mammalian and insect cells, respectively. In this system, inhibitory regions in the 5' end of the OpIE2 insect viral promoter were found to be blocking the activity of the CMV promoter in mammalian cells. Initially, the OpIE2 promoter was cloned downstream of the CMV promoter and upstream of the EGFP reporter gene. After introducing the constructed shuttle vector to insect and mammalian cells, a significant drop in the CMV promoter activity in mammalian cells was observed. To enhance the CMV promoter activity, several modifications were made to the shuttle vector including site-directed mutagenesis to remove all ATG codons from the downstream promoter (OpIE2), separating the two promoters to eliminate the effect of transcription interference between them, and finally, identifying some inhibitory regions in the OpIE2 promoter sequence. When these inhibitory regions were removed, high expression levels in insect and mammalian cells were maintained. In conclusion, a shuttle vector was constructed that works efficiently in both mammalian and insect cell lines in the absence of baculovirus infection or gene expression. Moreover, the shuttle vector can be used as a platform to further study the reason for this inhibition, which may give new insights about transcription and promoters' mode of action in both insect and mammalian hosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call