Abstract

It has become a major goal of molecular biologists, biochemists, and immunologists to be able to modulate the structure of proteins, in order to increase their antigenicity, alter their biological properties and/or explore their function. Based on the concept of bacterial phage display, by which proteins are being selected and analyzed in conjunction with their genetic information, eukaryotic systems have been investigated for their use in generating biomolecular diversity. The advantage of posttranslational modification and the possible harbouring of structural complex proteins has lead scientists to include eukaryotic systems in the wide field of molecular design. The ideal expression vectors for surface display are eukaryotic viruses, that allow large gene insertions, efficiently present foreign proteins on the particle surface, are easy to propagate and, if possible, not pathogenic to humans. By inserting peptides into a native virus coat protein or by expressing foreign proteins as coat protein fusion proteins or linked to specific anchor domains it becomes possible to display polypeptides of interest on the surface of replicating particles. A variety of different strategies are currently under investigation in order to utilize the baculovirus insect cell expression system for efficient display on the surface of virus particles as well as on the surface of virally infected insect cells. Increasing the transfection efficiency, optimizing cloning procedures, and establishing applicable selection methods have lead to the development of a powerful tool for drug screening and ligand screening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call