Abstract

The maturation of bacteriophage lambda DNA and its packaging into preformed heads to produce infectious phage is under the control of the two leftmost genes on the lambda chromosome, i.e., Nu1 and A. Based on its ability to complement lambda A- phage-infected cell extracts for packaging of lambda DNA in vitro, a single protein, designated terminase (ter) has been extensively purified using adsorption, ion exchange, and affinity column chromatography. The final preparation represents an approximately 60,000-fold purification over the activity found in crude extracts and is about 30 to 80% homogeneous as judged by visualizing the protein after electrophoresis in sodium dodecyl sulfate-polyacrylamide gel. In addition to packaging, terminase can also catalyze the endonucleolytic cleavage of lambda cohesive-end site DNA; both of these reactions require ATP. In some preparations, certain terminase fractions of extreme purity require protein factors present in extracts of uninfected Escherichia coli in order to catalyze the cohesive-end site cleavage reaction. On ion exchange columns purified terminase co-chromatographs with a DNA-dependent ATPase activity, hydrolyzing ATP to ADP and Pi in the presence of any of several types of DNA tested including those of non-lambda origin. The molecular weight of the native enzyme is 117,000 and appears to be a hetero-oligomer composed of 2 nonidentical subunits. The most likely composition of terminase is one gpA (gene product of A), Mr = 74,000 and two gpNu1, Mr = 21,000.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.