Abstract

AbstractType II sourdoughs were prepared using Lactobacillus amylovorus DCE 471, a producer of the bacteriocin amylovorin L. The strain was used as a starter culture for rye and wheat sourdoughs on laboratory scale (10 L), and in rye sourdough on pilot scale (100 L). The sourdoughs were acidified to a pH of around 3.5 within 15 h (laboratory dough) to 25 h (pilot‐scale dough). Final amylovorin L titres of 0.3–0.4 (laboratory scale) and 0.2 (pilot scale) MAU kg−1 of sourdough were detected. After baking of wheat dough that was supplemented with the pilot‐scale sourdough, no amylovorin L activity was recovered from the breadcrumbs. On laboratory scale, aeration or the addition of complex carbohydrates hardly affected growth or amylovorin L production. Rye and wheat sourdough fermentation were rather similar despite differences in sugar concentrations. The persistence of L. amylovorus DCE 471 during rye sourdough fermentation, both on laboratory and pilot scale, was confirmed by repetitive sequence‐based polymerase chain reaction (rep‐PCR) and by testing isolates towards an amylovorin L‐sensitive organism. Further, rep‐PCR indicated that the background microbiota of the flour—probably responsible for the production of low amounts of acetic acid—grew poorly and were overgrown by L. amylovorus DCE 471 during the pilot‐scale fermentation. Copyright © 2007 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call