Abstract

Wolbachia are vertically transmitted, obligatory intracellular bacteria that infect a great number of species of arthropods and nematodes. In insects, they are mainly known for disrupting the reproductive biology of their hosts in order to increase their transmission through the female germline. In Drosophila melanogaster, however, a strong and consistent effect of Wolbachia infection has not been found. Here we report that a bacterial infection renders D. melanogaster more resistant to Drosophila C virus, reducing the load of viruses in infected flies. We identify these resistance-inducing bacteria as Wolbachia. Furthermore, we show that Wolbachia also increases resistance of Drosophila to two other RNA virus infections (Nora virus and Flock House virus) but not to a DNA virus infection (Insect Iridescent Virus 6). These results identify a new major factor regulating D. melanogaster resistance to infection by RNA viruses and contribute to the idea that the response of a host to a particular pathogen also depends on its interactions with other microorganisms. This is also, to our knowledge, the first report of a strong beneficial effect of Wolbachia infection in D. melanogaster. The induced resistance to natural viral pathogens may explain Wolbachia prevalence in natural populations and represents a novel Wolbachia–host interaction.

Highlights

  • Wolbachia are obligatory, intracellular a-proteobacteria that infect a wide range of arthropods and filarial nematodes

  • We show that Wolbachia increases resistance of Drosophila to two other RNA viruses (Nora and Flock House virus) but not to a DNA virus (Insect Iridescent Virus 6)

  • Resistance to infection extends to two other RNA viruses but not to a DNA virus. These results identify a new major factor involved in Drosophila resistance to RNA viruses, and the first strong beneficial effect associated with Wolbachia infection in D. melanogaster

Read more

Summary

Introduction

Intracellular a-proteobacteria that infect a wide range of arthropods and filarial nematodes. Wolbachia were first discovered infecting the mosquito Culex pipiens in 1924 [5], but interest in these bacteria mainly arose when it was shown that infected mosquito males do not successfully breed with noninfected females [6]. This phenomenon is termed cytoplasmic incompatibility (CI) and has, since been found in many other insect species infected with Wolbachia [7]. In the majority of known cases, Wolbachia behave like reproductive parasites of their hosts

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.