Abstract

In bacteria transcription is coupled to translation, and while it is broadly accepted that transcription–translation complexes (TTCs) are formed in growing bacterial cells, the exact spatial organization of these macromolecular assemblies is not known with certainty. Recent studies indicated the formation of orderly cytosolic superstructures in growing E. coli cells. The bacterial nucleic acid (NA)-binding protein Hfq has been shown to function at the interface of RNA synthesis–degradation machinery; multiple, independent studies link Hfq to orderly cytosolic assemblies. In this work, using fast cell lysis/2D-PAGE and in vitro reconstitution analyses we studied the Hfq modifications and small protein-associated molecules (SPAM). We demonstrate that native Hfq carries stable modifications and simulate 2D patterns of native Hfq–SPAM complexes in reconstitution experiments with purified Hfq and synthetic NA probes. We also demonstrate that genetically engineered Hfq lacking the conserved arginine residues positioned near the rim of the disc formed by the subunits’ N-terminal domains binds DNA with a reduced affinity in comparison with wild-type Hfq. These results are consistent with the proposed Hfq-mediated DNA remodeling and point to the involvement of this patch of conserved arginines in interactions with DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call