Abstract

Plantaricin A (PlnA) is a 26-mer peptide pheromone with membrane-permeabilizing, strain-specific antibacterial activity, produced by Lactobacillus plantarum C11. We investigated the membrane-permeabilizing effects of PlnA on cultured cancerous and normal rat anterior pituitary cells using patch-clamp techniques and microfluorometry (fura-2). Cancerous cells displayed massive permeabilization within 5 s after exposure to 10-100 microM PlnA. The membrane depolarized to nearly 0 mV, and the membrane resistance decreased to a mere fraction of the initial value after less than 1 min. In outside-out membrane patches, 10 microM PlnA induced membrane currents reversing at 0 mV, which is compatible with an unspecific conductance increase. The D and L forms of the peptide had similar potency, indicating a nonchiral mechanism for the membrane-permeabilizing effect. Surprisingly, inside-out patches were insensitive to 1 mM PlnA. Primary cultures of normal rat anterior pituitary cells were also insensitive to the peptide. Thus, PlnA differentiates between plasma membranes and membrane leaflets. Microfluorometric recordings of [Ca(2+)](i) and cytosolic concentration of fluorochrome verified the rapid permeabilizing effect of PlnA on cancerous cells and the insensitivity of normal pituitary cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call