Abstract

Sulfate contamination in ecosystems has been a serious problem. Among various technologies, bioelectrochemical systems (BESs) show the advantage of no-pollution and low-cost for removing sulfate. In order to further expound the biological process of sulfate removal in BESs, 454 pyrosequencing was applied to analyze the bacterial communities under different pH conditions. The bacterial community profiles were analyzed from three aspects: (a) the α-diversity and β-diversity of bacterial communities, (b) the distribution of bacterial phylotypes, and (c) the characterizations of dominant operational taxonomic units (OTUs). We demonstrated that the indexes of phylotype richness and phylogenetic diversity were positively correlated across the pH gradient in the BESs. Among the dominant OTUs, the OTUs which were highly similar to Desulfatirhabdium butyrativorans, Desulfovibrio marrakechensis and Desulfomicrobium sp. might participate in removing sulfate. Standing on genus level, Desulfomicrobium and Sulfuricurvum play conducing and adverse roles for sulfate removal in alkaline condition, respectively. Desulfovibrio contributed to removing sulfate in the neutral and acidic conditions, while Thiomonas mainly weakened the performance of sulfate removal in neutral pH condition. These results further clarified how pH condition directly affected the bacterial communities, which consequently affected the performance of sulfate pollutant treatment using BESs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call