Abstract

The gamma-ray background physical origin for low altitude orbits defined by: diffuse cosmic gamma-emission, atmospheric gamma-rays, gamma-emission formed in interactions of charged particles (both prompt and activation) and transient events such as electrons precipitations and solar flares. The background conditions in the energy range from 0.1 MeV up to several MeV for low altitude orbits differ due to frequency of Earth Radiation Belts - ERBs (included South Atlantic Anomaly - SAA) passes and cosmic rays rigidity. The detectors and satellite constructive elements are activated by trapped in ERBs and moving along magnetic lines charged particles. In this case we propose simplified polynomial model separately for polar and equatorial orbits parts: background count rate temporal profile approximation by 4-5 order polynomials in equatorial regions, and linear approximations, parabolas or constants in polar caps. The polynomials’ coefficients supposed to be similar for identical spectral channels for each analyzed equatorial part taken into account normalization coefficients defined due to Kp-indexes study within period corresponding to calibration coefficients being approximately constants. The described model was successfully applied for the solar flares hard X-ray and gamma-ray emission characteristic studies by AVS-F apparatus data onboard CORONAS-F satellite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call