Abstract

In this present study, the mechanical properties (strength, hardness, moduli) and the dry sliding properties of stoichiometric and sub-stoichiometric NbC were compared. Microhardness and elastic properties of NbC depend from the C/Nb ratio, because the binary phase diagram Nb-C shows a region of homogeneity of NbC x of 0,72≤ x ≤1.0. At RT, hard metals of stoichiometric NbC have an elastic modulus E of ~440 GPa, those of substochiometric NbC 0,88 an E of 405 GPa. The hot hardness of sub-stoichiometric NbC is above 600°C higher than of WC. The dry sliding wear resistance (0,1-7/10 m/s) of the present Fe 3 Al-NbC 0,94 with ~61 vol.-% NbC as hard phase was close to those known of NbC-based hard metals. No grain pull-outs or fragmentations of the NbC grains were seen in the wear tracks of the Fe 3 Al-NbC composite (MMC), as a metallurgical interphase was formed between matrix and NbC grains. Stoichiometric and sub-stoichiometric niobium carbides have at RT and 400°C under dry sliding a prone intrinsic wear resistance more or less independent from sliding speed, either as hardmetal or as hard phase in metal matrix composite, associated with an exceptional high load carrying capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call